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The approach previously described [1 ] for solving the contact problem with adhesion is extended to the case of a punch of arbitrary 
shape acted upon by a tangential load. The contact problem with adhesion for a symmetrical punch with a contact area that  
increases as a result of  the loading was considered in [2-4] using an incremental approach. A solution of this problem was also 
given in [l]  based on inversion, using the method described in [5], of the system of singular integral equations for the contact 
stresses, and an analysis of  the additional conditions which ensure that this inversion is correct. © 1999 Elsevier Science Ltd. 
All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Suppose a rigid convex punch is indented into an elastic half-plane (see Fig. 1) by the action of a 
monotonically increasing normal load P2 and a tangential load P1, related to P2 by a certain relationship 

PI=N(P2), P2>0 (1.1) 

When the punch is impressed, adhesion occurs between the contacting bodies, i.e. the points of the half- 
plane arriving in contact with the punch do not experience any additional displacements with respect to it. 

We connect a system of coordinates with the punch, arranging its origin to be at the point of initial 
contact between the punch and the half-plane (see Fig. 1). 

We will assume that the dimensions a < 0, b > 0 of the contact area increase monotonically as the 
impressing of the punch progresses. Further, we will characterize by the quantity a (together with the 
quantity P2) the degree of impression of the punch, where, in particular, the dimension b will be a certain 
function of a. 

The problem consists of finding the contact stresses ql = 17xy[y = 0, q2 = -~y[y = 0 for arbitrary a, and also 
the relationship b(a). The boundary conditions corresponding to the problem in question have the form 

u(x,a)=tp(x)+C x, v (x ,a)= g(x +~ttp(x))+Cy, x e[-a,b]  (1.2) 

ql (X, a) = q2 (x, a) = 0, x E [--a, b] 

where u and t~ are the tangential and normal displacements of the boundary of the half-plane in the 
system x, y, cp(x) is a certain function, to be determined, y = g(x) is the equation of the shape of the 
punch, ~ = 0, 1, and the constants Cx and Cy are analogues of the rigid displacement of the punch along 
thex andy axes, the specific values of which have no effect on the solution of the contact problem, and, 
moreover, they can be set equal to zero in the chosen system of coordinates. 

The presence of the term cp(x) in the argument of the function g in (1.2) when ~t = 1 corresponds to 
the more accurate formulation of the contact problem. Namely, it takes into account the fact that, as 
the punch is impressed, the pointx on the boundary of the half-plane is displaced tangentially with respect 
to it and hence arrives in contact with a point on the punch which has the coordinatex + cp(x) [6]. When 
there is no ~(x) in the second equation of boundary conditions (1.2) (~t = 0), the latter will have the 
classical form [4]. 

We will impose the following limitations on the shape of the punch and on the unknown function 
O(x). Namely, we will consider the point x = 0 as a node and assume that 

G ( x ) -  g'(x) ~ H o, tp'(x) ~ H o (1.3) 

tPrikl. Mat. Mekh. Wol. 63, No. 1, pp. 111-118, 1999. 

101 



102 I. A. Soldatenkov 

Fig. 1. 

We recall that the notationf(x) ~ H0 for a node at the pointx = 0 denotes [5] that, for arbitrary positive 
dl and d2, the function f(x) belongs to the HOlder class on [--dl, 0] and [0, d2], provided that, for the 
first segment, we take as f(0) the limit off(x) as x ~ 0 - 0, and for the second segment the limit off(0)  
as x --~ 0 + 0. Here  and henceforth the prime denotes the derivative of a function with respect to the 
first argument. 

We will note some additional properties of the function cp(x), the value of which, when x ~ [-a, b], 
is identical with the tangential displacement of the point x of the contact area. First of all, by virtue of 
the choice of the system of coordinates xy and the conditions of adhesion between the contacting solids, 
we have 

q~(O) = 0 (1.4) 

Further, if xl < x2, when the half-plane is deformed a point on its boundary with coordinate xl will 
always be situated to the left of the point x2. This indicates that the sum x + cp(x) must be a strictly 
increasing function of x, which is ensured by the inequality 

1 + ~0"(x) > 0 (1 .5)  

As regards the functions ql(x, a) and q2(x, a) we will assume that, for each a, they are bounded at 
the ends----a, b of the contact area and belong to the class H* in [-a, b], i.e. in the notation used previously 
in [5] we will assume that 

qk(x, a) ~ h2[--a, hi, k = 1, 2 (1.6) 

Note that relation (1.6) allows of the presence in the functions ql,2(x, a) of integrable singularities 
at the point x = 0. 

The relation between the boundary stresses and the displacements u and o, in the linear theory of 
elasticity, is given by two equalities [7] 

mu'(x,a)=-~Xq2(x,a)+..**~ q~(~';)d~,_ mv'(x'a)=-nXq'(x'a)-_.**~ q2(~'a)~-x d~ (1.7) 

m = gE[2(l - v2)] -I, X = (1 - 2v)[2(1 - v)] -I 

where E is Young's modulus and'v is Poisson's ratio v ~ [0, 1/2). 
We will put x ~ [-a, b] in (1.7) and replace the function u(x, a), u(x, a) in them by the right-hand 

sides of the corresponding boundary conditions (1.2). We then multiply the first equation of  (1.7) by 
the square root of -1 and add it to the second. We obtain the following equation 

h q(~,a)d~ -nxq(x, a) + i_,~ ~ = f(x) 

q(x,a) = ql(x,a)+ iq2(x,a), f(x) = W2(x)+ i¥, (x) 

(1.8) 

(1.9) 
WI (x) = m~p'(x), W2(x) = mG(x + ~cp(x))(l + Bq~'(x)) 

From the definitions of the functionsf(x) and q(x, a) and relations (1.3) and (1.6) it follows directly 
that f(x) ~ Ho, q(x, a) e h2[-a, b]. 
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2. I N V E R S I O N  OF THE EQUATIONS FOR THE BOUNDARY STRESSES.  
F U N D A M E N T A L  RELATIONS 

According to the results obtained previously [5], the solution q(x, a) of Eq. (1.8) from the class 
h2[-a, b] for a specified a and b and f(x) ~ Ho exists if and only if 

b f ( ~ ) ~  
I = 0  
-~ Zl (~, a) 

[ b_  x'~ nl2 
Zl(x,a) = ~l(a + x ) (b -  x)~'~"~x ) , x = 1 in 1 +______X = i In(3 - 4v) 

When condition (2.1) is satisfied, we have the following formula for inverting Eq. (1.8) 

o h 
q(x, a) = )~Of(x) - "7 Zt (x, a) J x ~ I-a, bl 

n, _o x ) '  

(2.1) 

(2.2) 
a = [,~(1 - ~2)]-1 

Note that the limit values of the function q(x, a) f r o m  ( 2 . 2 )  as  x --~ - a  + 0 a n d  x - ~  b - 0 are equal 
to zero. This follows directly from the well-known theorem on the behavior of the Cauchy-type integral, 
present in (2.2), close to the ends of the line of integration [5]. 

We will transform Eqs (2.1) and (2.2). We substitute into (2.1) the expression for the functionf(x) 
in terms of the functions ~l(x) and ~2(x), rather than the function itself, which, in turn, are related to 
the functions ~(x) and g(x) by Eqs (1.9). Separating the real and imaginary parts in the expression 
obtained, we arrive at the following two equations 

h [- , . . [ - s i n a ( x , a ) ]  , Icosa(x,a) t ]  dx - 0  
S [cp tx) I cosa(x,a)~+G(x+Btp(x))(l +Btp (x))t j j s ina(x ,a)  x/(a+ ~)(b- x) (2.3) 

- a  " 

a(x,a) =X--ln a + x  
2 b - x  

Making a similar substitution into (2.2), we will have 

{qt(x,a)~ 0[ /xl/2(x)] I "(a . sina(x,a) 
q2(x,a,J = [x'Lvl(x)J -  +x)(b-x)(q(x'a){cosa(x,a)}+ 
• . .f cosa(x,a)]  . .  .[ cosa(x,a)]  . .  . [s ina(x,a)]~]  

+j, tx, al~_sina(x,a)~+t2tx, a , l_s ina(x ,a)~- j2 tx ,  a)lcosa(x,a)~) ~ (2.4) 

{ ik(x'a)~= ~ lsina(~'a)~ ~l¢(~)d~ , x~[-a ,b]  
Jk (x, a)J _~ [cos a(~,a)J ~](a + ~)(b - ~)(~ - x) 

We now return to Eqs (2.3) and note that the quantity b occurring in them is a certain function of a, 
while these equations themselves must be satisfied for any a. Hence, Eqs (2.3) can be regarded as Volterra- 
type non-linear integral equations of the first kind in terms of the unknown functions ~(x) and b(a). 

Relation (1.1) gives one further equation for determining cp(x) and b(a). In fact, from the equilibrium 
condition for the punch we have 

b 
PI = S [ql (x, a) cos tO(x) + q2 (x, a) sin tO(x)]dx 

- - t /  

(2.5) 
P= = ~ [-ql (x, a) sin tO(x) + q2 (x, a) cos tO(x)]dx 

- - a  

where co(x) = arctg g'(x). Substituting (2.5) into (1.1) and taking expressions (2.4) for qL 2(x, a) into 
account, we arrive at the additional equation for ~(x) and b(a). 

Hence, the three equations, namely, the two equations (2.3) and Eq. (1.1), together with expressions 
(2.4) and (2.5), form a system of equations in terms of the unknown functions ~(x) and b(a), after finding 
which, expressions (2.4) determine the stresses q~, 2(x, a), thereby solving the problem in question. 
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Note that the second of equations (2.5) for the known stresses ql.2(x, a) gives the value of the normal 
load P2 as a function of the dimension a of the contact region. As was mentioned above, as the punch 
penetrates the positive load P2 increases monotonically, and hence we have the inequalities 

P2(a)>0, P~(a) >- 0 (2.6) 

which, together with (1.4) and (1.5) impose additional constraints on the functions ip(x) and b(a). 
Below we consider the special case of a wedge-shaped punch and the linear relationship (1.1), for which 

the unknown function ip(x) can be found in the class of piecewise-linear functions for a linear form ofb(a). 

Suppose 

3. A W E D G E - S H A P E D  P U N C H  (THE G E N E R A L  CASE)  

l _ g(x) = g~x, x < 0 g~ = const 
tg~x, x~>0;  (3.1)  gi -<  o, g i~>o  

Henceforth we will set I gT I < 1, which is necessary in order to justify the use of Eqs (1.7) of  the linear 
theory of  elasticity. We will seek the unknown function ~(x) in the class of  piecewise-linear functions, 
namely, taking Eq. (1.4) into account we set 

¢pfx) = f Ipi-x' x < 0 (3.2) 
[~Tx,  x I> 0 

Finally, we assume relation (1.1) to be linear 

el = he2, n =const (3.3) 

It is easy to establish that expressions (3.1) and (3.2) for the functions g(x) and cp(x) satisfy conditions 
(1.3). We substitute these expressions into (2.3) and (3.3), where, in the last equality, we define the 
quantities P1,2 in terms of ~p(x) according to the following chain of equalities: (2.5), (12.4) and (1.9). 
After simple calculations we thereby arrive at the following system of three equations 

(121(P] + (122~0~ " = 132 (3.4)  

(13~0i- +a32~o~ = 133 

(1tl = (To - Ai ) + lag[ (~i o - A2), 

(I21 = (50 -- A2) - lt.tgl (To - A I ), 

(13, = B? - nB~, e32 =/~? - nBS 

131 = -gl-- (80 - A2 ) - g~(80 + A 2 ), 

133 = -CI + nC2 

(112 = -(Yo - AI) + gg~'(80 +A2) 

(122 = (80 + A2) + lagS" (To - A~ ) 

132 = - (g~  - gi-)(v0 - A~) 

B~ = ±( A~" + gg ~ A 2 ) sin 03- +_- ( A~ + gg~ A~ ) sin 03+ -T- 

~:(A~ - ~g~ ,V)cos  03- :~ (,~- - ~ g ? , V ) c o s  03 ÷ 

B~ = +(A2- - gg~:Aj-)sin 03- + (A~ - I.tg?Aj+) sin 03+ + 

+(A[" + ggl~A~) cos 03 - + (a? + I,tg?AS)cos 03 + 

Cl = (g~" - g[-)(A~ sin 03- + A S sin 03+ + A[ cos 03- + Ai + cos 03+) 

(72 = (g~ - g[ ) ( -A? sin 03- - al + sin 03+ + A 2 cos 03- + A S cos 03+) 

A~ = +[(+8 0 + A2) sin 'tp + (To - A1 ) cos xp] / ch p 
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A~: = [q:(~/o - An ) sin "cp + (80 + A 2 ) cos 'cp] /oh  p 

{A~} fAx(p)~_~fsinxX~ dX l lnb 
= ~ A 2 ( P ) J = ~ [ e ° s x X J c - ~  ' P=2" a 

Y0=AI(**), ~io=A2(** ), o+=arctg~ 

We note immediately the following properties of the quantities introduced, which can be established 
by a simple analysis when v e [0, 1/2] 

0<To<S0 ;  AL2(P);e0 for p ~ 0  (3.5) 

Equations (3.4) are linear algebraic equations in the unknownparameters ~01, ~0~ of the function ~0(x). 
The coefficients of Eqs (3.4) are determined by the constants gl ,  n, z and ~t, and also by the unknown 
quantity p, which describes the degree of asymmetry of the contact area. Taking this fact into account, 
we require the function b(a) to be linear, which ensures that the quantity p is constant as a increases, 
and consequently (by virtue of Eqs (3.4)), the constancy of the parameters ~ ,  laid down in (3.2). Hence, 
we will assume that 

b(a) = e~Oa, p = const (3.6) 

We will denote by A* the augmented 3 x 3 matrix of system (3.4), which is formed by adding the 
column of free terms of system (3.4) to the matrix of the coefficients of its left-hand side. We know 
[8], that the necessary condition for a solution ~01 of system (3.4) to exist for any fixed p is the 
equation 

Oct A* = 0 (3.7) 

The left-hand side of (3.7) contains the single unknown quantity p and hence this condition can 
be regarded as the equation for p. Using the formula for the expansion of the determinant in 
(3.7) with respect to the third row of the matrixA* [8], we obtain the following representation for 
Eq. (3.7) 

Sl(p) - nS2(p) : 0 (3.8) 

in which $1,2(p) are known functions, defined by the quantities g~ and Ix 

Sk(P) = Ckdo + B[dl + B;d2 (3.9) 

do = 0~110t22 -- 0f'120~21 

an = a22[]i - a12[~z, d2 = a,~[~2 -a2,[]i (3 .10)  

The quantity p obtained from Eq. (3.8) by means of Eq. (3.6) defines the linear relationship b(a). 
Moreover, for known p from Eqs (3.4) (one of which is eliminated from consideration since, by virtue 
of (3.7), it is a consequence of the remaining ones [8]) we obtain the parameters ~p~ and, consequently, 
also the function q~(x). 

After finding b(a) and tp(x), the stresses ql, 2(x, a) are found by simple substitution of expressions 
(3.1), (3.2) and (3.6) into (2.4) 

ql (x,a) = 0{X(~z (x ) -  ¥~') +/[(W~ - w2)WJ ( t ) -  ( ~  - ~ ) W  2 (t)]} 

q2(x, a) = 0{X(Vn (x) - ~ )  + / [(V~" - W~ )Wt (t) + ( ~  - ¥~)W2 (t)l } (3. 1 1) 

v~=m~°~'  WI=mg?(l+~ttO~)' t=llnl+x/al-xlb 

f¥~,  x<O;  fWl(t)~_7~sin'cX ~ dX 

The known stresses ql,2(x, a) enable us, using the second equation of (2.5), to obtain P2(a) 
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m 

P2(a)=~-(l+e2P)(B2-gl +B2+tP~ +C2)a, mo= n2(1_~2) (3.12) 

Finally, we need to verify whether the expressions obtained for ~(x) and P2(a) satisfy inequalities 
(1.5) and (2.6), which, by virtue of expressions (3.2) and (3.12) have the form 

I + ~  >0, B2tP{+B~tP~+C2 >0 (3.13) 

If at least one of inequalities (3.13) is violated, expressions (3.2), (3.6) and (3.11), for the values of p 
and ~ obtained, do not give a solution of the problem of the indentation of a wedge-shaped punch 
with adhesion into a half-plane. Such a situation indicates that there is no solution of the problem in 
question in the class of piecewise-linear functions for the tangential boundary displacement ~(x) when 
b(a) is linear. 

4. A SYMMETRICAL WEDGE-SHAPED PUNCH 

In the case of a symmetrical wedge-shaped punch g~ = ---gl, gl e (0, 1) and for SL2(p ) for the following 
expressions hold 

S I (p) = T sin(xp + w(p)), S 2 (p) = T cos(xp + w(p)) (4.1) 

r - f a - ! .  + b .  = 2 + A ]t(B0 + g,A,)  2 + 87A ]I 

a, = x[glA ~ +(/91 - hl)(B 0 +glhl)]  

b, = ×[(D I - AI )gi - (Bo + glAl)]A2 

sinw=b, IT, cosw=a. IT 

Bo =80-glYo, DI =Y0-BgtS0 , x=8glSoC°St°/chp 

Henceforth we will eliminate from consideration the case when D1 = 0, which by virtue of the first 
relation of (3.5), only occurs when I~ = 1 and gl = 70/8o. 

It follows directly from the expression for T given above, in which D1 ~ 0, g~ > 0 and, according to 
(3.5), A2 ~ 0 when p ~ 0, that T > 0. The last inequality enables us, using (4.1), to give Eq. (3.8) for 
p the following form 

n : tg(~p + w(p)) (4.2) 

Moreover, it can be established that for values of p which satisfy Eq. (4.2), the third equation of system 
(3.4) is equivalent to the first and hence should be eliminated from consideration. The remaining first 
two equations of (3.4) give 

~'{:dl/do, ffj~=d21d o for do~ 0 (4.3) 

Hence, for a symmetrical wedge-shaped punch, after p has been determined from Eq. (4.2), the 
pararncters ~p~ of the function ~p(x) can be found from Eqs (4.3) provided do ~ 0. Expressions for the 
stresses q~, 2(x, a) are found directly from Eqs (3.11). 

Substituting (4.3) into (3.12) and using (3.9) we obtain the following expression for P2(a) 

P2 (a) = ~ m0(1 + e 2p)S2dOla (4.4) 

When (4.2), (4.3) and (4.4) are satisfied, we can give inequalities (3.13) the form 

l+dkldo>O, k=l ,2;  S21do>O (4.5) 

In conclusion we will consider the case of small values of [P [. For this purpose we will write the 
following asymptotic forms of the functions Al,E(p) 

Aj(p)=~xp 2 +O(p4), A2(p):p+O(p 3) 

by means of which we obtain from (3.10) 
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do(P) = 2DID 2 + O(i 32), dl.2(p) = -2glYoDj :I: 2glSop + O(p 2) (4.6) 

B : B  ocosCo, D 2 = 8  o+gtgjY0 

and we represent Eq. (4.2) for p in the form 

n = nip + O(p 3), nl = [(gl cosco + xB)DI - B](BDI )-i (4.7) 

Note that the parameters B and D2, which occur in (4.6) and (4.7), are non-zero--this follows from 
inequalities (3.5) and the constraint gl e (0, 1). Moreover, it can be established that nl ~ 0 and we can 
obtain from (4.7) 

p = nlnl + tP(n 3) (4.8) 

Substituting (4.6) and (4.8) into (3.6), (4.3) and (4.4) we obtain 

b(a) = (1 + 2n / n I )a + O(n 2) 

~0~ = glD~ -l [-?0 + 50 (Dtnt)-I n] + O(n 2) (4.9) 

P2(a) = 4glSoBD~l mo(l + n I n I )a + O(n 2) 

Hence, as p ~ 0 we have n ~ 0 and expression (4.9) is the solution of the problem. The stresses 
ql.2(x, a) are found from (3.11) using the values of tO1 -+ obtained. Verification of conditions (4.5) presents 
no difficulty. 

When n = 0, expressions (4.9) and expressions (3.11) for the contact Stresses, corresponding to them, 
give the solution of the symmetrical problem with adhesion for a wedge-shaped punch, considered 
previously [1], 
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